研究成果
Click to Enlarge
Textbook:Molecular Biology of Cells
7th edition,2022
Textbook:Molecular Biology of Cells
7th edition,2022
Textbook:Molecular Biology of Cells
7th edition,2022
2024
TMEM63B, a mechanosensitive channel, functions as a plasma membrane lipid scramblase
Nat. Struct. Mol. Biol., 2024, in press.
DOI: https://dx.doi.org/10.1038/s41594-024-01411-6
ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis.
eLife. 2024
DOI: https://doi.org/10.7554/eLife.96085.2
Substrate specificity controlled by the exit site of human P4-ATPases, revealed by de novo point mutations in neurological disorders.
Proc. Natl. Acad. Sci. USA, 2024, in press.
DOI: https://dx.doi.org/10.1073/pnas.2415755121
The role of the C-terminal tail region as a plug to regulate XKR8 lipid scramblase
J. Biol. Chem., 300,105755
DOI: https://dx.doi.org/10.1016/j.jbc.2024.105755
2023
Cloning of human Type I interferon cDNAs
Proc. Jpn. Acad. Ser. B., 100,1-8 (Review series to celebrate our 100th volume)
DOI: https://dx.doi.org/10.2183/pjab.100.001
Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases.
Nat. Rev. Mol. Cell. Biol.,Vol 24, 2023
DOI: https://doi.org/10.1038/s41580-023-00604-z
2022
Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes.
J Biol Chem: 102527, 2022
DOI: https://doi.org/10.1016/j.jbc.2022.102527
The XK plasma membrane scramblase and the VPS13A cytosolic lipid transporter for ATP-induced cell death
BioEssays August 2022
DOI: https://doi.org/10.1002/bies.202200106
Inefficient development of syncytiotrophoblasts in the Atp11a-deficient mouse placenta.
Proc. Natl. Acad. Sci. U.S.A. 119: e2200582119
DOI: https://doi.org/10.1073/pnas.2200582119
Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells.
Proc Nat Acad Sci USA 119: e2119286119
https://doi.org/10.1073/pnas.2119286119
2021
The tertiary structure of the human Xkr8-Basigin complex that scrambles phospholipids at plasma membranes.
Nature Structural & Molecular Biology 28: 825-834, 2021,
http://doi.org/10.1038/s41594-021-00665-8
A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes.
Journal of Clinical Investigation 131, e148005, 2021
http://doi.org/10.1172/jci148005
TIM4 on type 1 DCs mediates uptake of tumor-associated antigens and activation of anti tumor responses in lung tumor.
Nat Commun 12: 2237, 2021, DOI: 10.1038/s41467-021-22535-z
https://www.nature.com/articles/s41467-021-22535-z
Tim4 recognizes carbon nanotubes and mediates phagocytosis leading to granuloma formation.
Cell Rep. 34: 108734, 2021
https://10.1016/j.celrep.2021.108734.
2020
Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
Cell Rep. 32: 108208, 2020
https://10.1016/j.celrep.2020.108208.
Sensing and clearance of apoptotic cells
Curr. Opin. Immunol. 68: 1-8, 2020
https://doi.org/10.1016/j.coi.2020.07.007.
Crystal structure of a human plasma membrane phospholipid flippase.
J Biol Chem 295, 10180-10194 (2020).
https://www.jbc.org/content/295/30/10180
Functional expression of the P2X7 ATP receptor requires Eros.
J. Immunol. Vol. 204, Issue 3 559-568, 2020
https://www.jimmunol.org/content/204/3/559.long
Infertility caused by inefficient apoptotic germ cell clearance in Xkr8-deficient male mice.
Mol. Cell. Biol. 40 (3), e00402-19
https://mcb.asm.org/content/40/3/e00402-19.long
2019
Flippase and Scramblase for Phosphatidylserine Exposure.
Curr Opin Immunol 62, 31-38 (2020).
https://doi.org/10.1016/j.coi.2019.11.009
Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution.
Proc Natl Acad Sci USA 116:13368-13373, 2019
https://www.pnas.org/content/116/27/13368
MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation.
J Biol Chem. 294(18): 7221-7230. 2019
http://www.jbc.org/cgi/doi/10.1074/jbc.RA118.006628
Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure.
Proc. Natl. Acad. Sci. USA 116: 2907-2912, 2019
2018
Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.
Proc. Nat. Acad. Sci. USA: 115(48):12212-12217. 2018
https://doi.org/10.1073/pnas.1814323115
Efferocytosis and autoimmune disease.
Int. Immunol. 30: 551-558, 2018
https://doi.org/10.1093/intimm/dxy055
Single-molecule analysis of phospholipid scrambling by TMEM16F.
Proc. Nat. Acad. Sci. USA: 15: 3066-3071. 2018
http://doi.org./10.1073/pnas.1717956115
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Cell Death Differ 25: 486-541. 2018
Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase
Proc. Natl. Acad. Sci. USA, 115: 2132-2137. 2018
https://doi.org/10.1073/pnas.1720732115.
Apoptosis and clearance of apoptotic cells
Annual Review of Immunology 36: 489-517, 2018
https://doi.org/10.1146/annurev-immunol-042617-053010
The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
J Biol Chem. 293: 2172-2182. 2018
2017
Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis.
Proc Nat Acad Sci USA 114: 8800-8805.
https://doi.org/10.1073/pnas.1705365114.
Characterization of the scrambling domain of the TMEM16 family.
Proc. Natl. Acad. Sci. USA 114:6274-6279.
http://www.ncbi.nlm.nih.gov/pubmed/28559311
Programmed cell death and the immune system.
Nat Rev Immunol 17:333-340
http://www.ncbi.nlm.nih.gov/pubmed/28163302
Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction.
J Clin Invest: 127: 383-401, 2017
2016
Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure.
Proc. Natl. Acad. Sci. USA 113: 9509-9514, 2016
http://www.ncbi.nlm.nih.gov/pubmed/27503893
Osteopontin in Spontaneous Germinal Centers Inhibits Apoptotic Cell Engulfment and Promotes Anti-Nuclear Antibody Production in Lupus-Prone Mice.
J. Immunol. 197: 2177-2186, 2016
http://www.ncbi.nlm.nih.gov/pubmed/7534552
A Role of Ca2+ in the Stability and Function of TMEM16F and 16K.
Biochemistry 55: 3180-3188, 2016
http://www.ncbi.nlm.nih.gov/pubmed/27227820
Cell biology: Killer enzymes tethered.
Nature 533: 474-476, 2016
http://www.nature.com/nature/journal/v533/n7604/full/nature18439.html
Human type IV P-type ATPases that work as plasma membrane phospholipid flippases, and their regulation by caspase and calcium.
J. Biol. Chem. 291 (2): 762-772, 2016
http://www.jbc.org/cgi/doi/10.1074/jbc.M115.690727
A role of TMEM16E carrying a scrambling domain in sperm motility.
Mol. Cell Biol. 36: 645-659, 2016
http://www.ncbi.nlm.nih.gov/pubmed/26667038
Exposure of Phosphatidylserine on the Cell Surface.
Cell Death Differ. 23: 952-961, 2016
2015
TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.
Proc. Natl. Acad. Sci. USA 112 (41): 12800-12805, 2015
http://www.pnas.org/lookup/doi/10.1073/pnas.1516594112
An apoptotic 'eat me' signal: phosphatidylserine exposure.
Trends Cell Biol 25: 649-650, 2015
http://www.ncbi.nlm.nih.gov/pubmed/26437594
Clearance of Apoptotic Cells and Pyrenocytes.
Curr. Top. Dev. Biol. 114: 267-295, 2015
http://www.ncbi.nlm.nih.gov/pubmed/26431571
DNA-Mediated Cyclic GMP-AMP Synthase-Dependent and -Independent Regulation of Innate Immune Responses.
J Immunol. 194(10):4914-23., 2015